Skocz do zawartości

Znajdź zawartość

Wyświetlanie wyników dla tagów 'hoo' .

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Obserwujemy Wszechświat
    • Astronomia dla początkujących
    • Co obserwujemy?
    • Czym obserwujemy?
  • Utrwalamy Wszechświat
    • Astrofotografia
    • Astroszkice
  • Zaplecze sprzętowe
    • ATM
    • Sprzęt do foto
    • Testy i recenzje
    • Moje domowe obserwatorium
  • Astronomia teoretyczna i badanie kosmosu
    • Astronomia ogólna
    • Astriculus
    • Astronautyka
  • Astrospołeczność
    • Zloty astromiłośnicze
    • Konkursy FA
    • Sprawy techniczne F.A.
    • Astro-giełda
    • Serwisy i media partnerskie

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Zamieszkały


Interests


Miejsce zamieszkania

Znaleziono 4 wyniki

  1. Chciałem wam pokazać jajko Łabędzia- mgławicę planetarną MWP 1, zwaną mgławicą Matuzalema. Obiekt, niestety, bardzo rzadko fotografowany (na AB jest ze 12 zdjęć…). W prawym dolnym rogu znajduje się także mgławica planetarna Alv 1. Jest tam przypadkiem, ponieważ nie sądziłem, że mój FOV pozwoli na rozsądne zmieszczenie obydwu w dobrze zaplanowanym kadrze. Kadrowałem więc i ustawiałem rotację na ślepo, po asteryzmach, ponieważ praktycznie nie ma śladu mgławicy na subach 300 s, starając się umieścić MWP 1 w centrum. Stakując materiał z pierwszej (z wielu) nocy okazało się, iż Alv 1 zmieścił się w rogu. Kadr wyszedł więc dziwaczny, ale nie mogę wyciąć tej uroczej kulki. Chciałem podziękować @zombi za zwrócenie uwagi na pewne oczywiste błędy, które popełniłem, ale kompletnie ich nie zauważałem. Starałem się je poprawić, w miarę możliwości. Zachęcam do brania bezpośrednich uwag na serio, ponieważ dobrze motywują- jeszcze tego samego wieczoru wyleciałem łapać materiał na gwiazdy RGB w przerwach między chmurami. Fotka: OIII: Ha: Czasy Materiał zbierany od lipca do sierpnia 2023 z mojego podwórka w Górach Świętokrzyskich w ilości 44 g 47 min, w tym: OIII: 213x300s – 17g 45min. Ha: 313x300s – 26g 5 min. RGB: 38x30s na każdy kanał. Sprzęt: Teleskop: SkyWatcher Maksutov-Newtonian MN190, 190/1000 mm Kamera: ASI1600MMP, Filtry: Antlia Ha 3nm, Antlia OIII 3nm, Montaż: SkyWatcher EQ6PRO Guider: SvBony 240mm, ASI120MM mini, Akcesoria: ZWO EFW, ZWO EAF, ASIAir V1 WORKFLOW Tym razem składane zupełnie inaczej niż wszystkie moje poprzednie zdjęcia HO. Bez użycia Gradient Map w PS. Kolory składane w PIX, wydzielona luminancja. Byłem ciekaw jak wyjdzie. W sumie, wyszło podobnie. Kolorystycznie, bez specjalnych intencji, wyszło podobnie jak moje zeszłoroczne WR134. Powiedzmy, że pasuje- też w Łabędziu :-) Pixinsight 1. DynamicCrop, 2. DynamicBackgroundExtraction, 3. BlurXterminator (ustawienie 0.45, wyłącznie OIII), 4. StarXterminator, Rozdzieliłem pliki przeznaczone na kolor i L. LUM: 1. NoiseXterminator, delikatnie, 2. Połączenie Ha i OIII w Pixelmath (a*OIII + (1-a)*Ha), „a” dobierane na oko, 3. GeneralizedHyperbolicStretch. RGB: 1. NoiseXterminator, solidna dawka, 2. Zmontowanie dwóch różnych wariantów kolorystycznych w PixelMath i pomieszanie ich do smaku. 3. Rozciągnięcie Ha i OIII za pomocą HistogramTransformation z ustawieniami jak w STF, LRGB: 1. LRGBCombination, suwaki „Lightness” i „Saturation” odpowiednio dostosowane, 2. Praca nad kolorami, kontrastem, zarówno w Pixie jak i w PS, z zastosowaniem różnych masek. Gwiazdki: 1. DC, DBE, BX (tylko korekta, bez zmniejszania), 2. SpectrophotometricColorCalibration, 3. StarXterminator z opcją „unscreen stars”, 4. Podbicie nasycenia i drobne korekty w PS. 5. Dodanie gwiazdek w Pixie poprzez skrypt ScreenStars. Resize 85%, zapis jako PNG. O OBIEKTACH Niestety, w literaturze nie ma wiele ani o MWP 1 ani Alv 1. MWP 1 została odkryta w latach 90 XX wieku. Motch, Werner i Pakull badali źródła promieniowania X w Łabędziu. Okazało się, iż jedno z nich to centralna gwiazda MWP 1- gwiazda zmienna egzotycznego typu: GW Vir. Alves 1 to mgławica planetarna przypadkowo odkryta przez amatora-astronoma Filipe Alvesa, bodajże kilkanaście lat temu. Ładnie widać głęboko niebieską centralną gwiazdę na moim zdjęciu. Gwiazda centralna MWP1 – gwiazda typu GW Vir- RX J2117.1+3412. Nie jest to typowy biały karzeł, jakie zwykle się znajdują w centrach mgławic planetarnych. Na diagramie Hertzsprunga-Russella znajduje się gdzieś pomiędzy białymi karłami a gwiazdami na asymptotycznej gałęzi olbrzymów. Kiedyś, zapewne, ostygnie i stanie się białym karłem typu DO. Ich atmosfera składa się głównie z helu, węgla i tlenu. Te gwiazdy są absurdalnie gorące- temperatura powierzchni wynosi około 170 000 K (sic!) (https://arxiv.org/pdf/0709.0041.pdf). Dlatego emituje promieniowanie Roentgena. Dla porównania, powierzchnia Słońca- 5800K. To jednak nie jest szczególnie dziwne. Dziwna jest zmienność tej gwiazdy. W latach 80-tych dokładnie obserwowano inną gwiazdę GW Vir- PG 1159-035. Badacze zidentyfikowali ponad 100 różnych cykli drgań, o częstotliwościach od 300 do 1000 na sekundę. Nic dziwnego, że wykres wygląda tak: Źródło: Wikipedia. „GW” w nazwie typu gwiazdy jest akronimem „gravity waves” – nie tych fal grawitacyjnych, które przewidział Einstein (gravitational waves), lecz fal znanych z mechaniki cieczy. Za Wikipedią: „jest to fala utworzona przez siły wypornościowe i siłę grawitacji w stabilnie stratyfikowanym ośrodku lub na powierzchni dwóch warstw płynu o różnej gęstości”. Nasza atmosfera i oceany są pełne tych fal. Ta gwiazda również. Dzięki nim mamy takie widoki: Źródło: Internet :-) Więcej do poczytania na temat RX J2117.1+3412: https://arxiv.org/pdf/astro-ph/0610420.pdf https://www.aanda.org/articles/aa/abs/2021/01/aa39202-20/aa39202-20.html Powstanie i morfologia mgławicy MWP 1 Jest to mgławica bipolarna, tak jak popularna M27. Wyraźnie zdefiniowane są dwa, przeciwległe bieguny. Są to kierunki, w które centralna gwiazda wyrzuciła większość materiału- zewnętrznej powłoki, gdy zużyła całe paliwo w swym jądrze. Bipolarność może być spowodowana obecnością drugiej gwiazdy (układ podwójny) lub bardzo silnym polem magnetycznym. Niestety nie znalazłem żadnych wiarygodnych źródeł, które potwierdzają te mechanizmy w tym wypadku. Ta mgławica jest jedną z największych i najstarszych znanych nam. W zasadzie, jest zagadkowo stara, jak na PN, które zwykle są obserwowalne przez 10 – 20 tysięcy lat. Ta liczy sobie około 150 tysięcy lat- stąd nieoficjalna nazwa: Mgławica Matuzalema. Odpowiedzią na zagadkę jej niezwykłej długowieczności jest równie niezwykły cykl życia jej centralnej gwiazdy. Jak większość gwiazd wielkości zbliżonej do naszego Słońca, po fazie czerwonego olbrzyma i zużyciu paliwa wodorowego w jądrze, RX J2117.1+3412 odrzuciła swe zewnętrzne warstwy i powinna była stać się białym karłem, otoczonym „zwykłą” mgławicą planetarną. Jednakże, spektakularnie chociaż krótkotrwale, „narodziła się ponownie” na skutek zjawiska nazywanego very late helium thermal pulse (VLTP) lub late helium thermal pulse (LTP). W tym wypadku doszło prawdopodobnie do VLTP. Po odrzuceniu zewnętrznej powłoki doszło do zapłonu helu w zewnętrznych warstwach gwiazdy (nie w jądrze, złożonym z węgla i tlenu). Przez to prawie-bały karzeł stał się ponownie olbrzymem w rejonie AGB diagramu H-R. Ta faza trwała bardzo krótko- może 200 lat. Był to jednakże niezwykle energetyczny epizod- takie gwiazdy bardzo przypominają gwiazdy WR- wielkie, niezwykle gorące, z intensywnym wiatrem gwiazdowym. Prawdopodobnie ten kilkusetletni epizod wystarczył, aby dodać mgławicy MWP 1 ponad 100 tysięcy lat dodatkowego życia i powiększyć jej rozmiary daleko poza spodziewane dla „zwykłej” mgławicy planetarnej. ŹRÓDŁOWE PLIKI I KOMPLET MATERIAŁÓW DOSTĘPNE NA PW.
  2. Po długiej przerwie meteorologicznej mam przyjemność przedstawić wam moje ostatnie zdjęcie. Obiekt wybrałem nie dlatego, że marzyłem o sfotografowaniu go. Wybrałem go głównie dlatego, że akurat był dostępny o tej porze z mojej lokalizacji i pasował do mojej serii HOO a bardziej pożądane cele są jeszcze zbyt nisko. Niezasłużenie, bo to jednak bardzo piękna mgławica i niezwykle interesująca pod względem astrofizycznym. Focia: Starless: Ha: OIII: Czas i miejsce: Świętokrzyska wieś, Bortle 4, materiał zbierany od 08.02.2023 do 23.04.2023. Ha głównie podczas nocy z Księżycem, OIII wyłącznie nocami bezksiężycowymi. Ekspozycja: 1. Ha- 233 x 300 s = 19,46 g. 2. OIII- 207 x 300 s = 17,25 g. 3. RGB – po 30 x 60 s na kanał. Łącznie: 38,21 g. Sprzęt: Teleskop: SkyWatcher Maksutov-Newtonian MN190, 190/1000 mm Kamera: ASI1600MMP, Filtry: Antlia Ha 3nm (reszta), Antlia OIII 3nm, Montaż: SkyWatcher EQ6PRO Guider: SvBony 240mm, ASI120MM mini, Akcesoria: ZWO EFW, ZWO EAF, ASIAir V1 Kilka słów o obróbce Moim celem było pokazać więcej niż w wielu zdjęciach tej mgławicy, na których zarejestrowane są jedynie dwa najjaśniejsze pasy- tlenu i wodoru. Nie ilustruje to prawdziwej struktury i dynamiki obiektu. Nie potrzeba było bardzo dużo czasu (jak na moje obecne kryteria) aby pokazać cały kształt sfery, którą ten obiekt jest. Widać też miejsce, w którym jest faktycznie rozrywany przez białego karła i szczątki otaczającej go mgławicy planetarnej. Z tego miejsca ulatują zjonizowane choć efemeryczne strumienie H i O- co też dość dobrze się uwidoczniło. Udało mi się też zarejestrować i wydobyć ślady wodorowych struktur w tle, które nie są bezpośrednio związane z Sh2-174. Generalnie nieźle, choć zdjęcie by zyskało niemało na dodatkowych 10-20 godzinach Ha. Obróbka nie była szczególnie trudna czy skomplikowana i nie wymagała żadnych radykalnych pociągnięć po drodze. Kluczem było odpowiednie rozciągnięcie Ha i OIII, gdyż mimo rozsądnego czasu naświetlania dane są bardzo płytkie a histogram cienki jak szpila. Na szczęście nie tak bardzo jak w HFG1. Ciekawostka- zdjęcie jest zupełnie inne w odbiorze, jeżeli jest odwrócone o 180 st. Wtedy faktycznie wygląda jak róża! Workflow A. Pixinsight, 1. DynamicCrop, 2. BlurXterminator (prawie nic nie zrobił), 3. StarXterminator, 4. DynamicBackgroundExtraction, 5. NoiseXterminator, 6. GeneralizedHyperbolicStretch w wielu drobnych krokach i delikatna redukcja szumów za pomocą NoiseXterminator po drodze. B. Photoshop 1. Gradient Map na Ha i OIII, 2. Małe korekty Levels obydwu kanałów, 3. Eksport do Pixa, HDRMultiscaleTransform i dodanie warstwy jako Luminance, krycie 30%, ponieważ kilka miejsc wyglądało bardziej plackowato niż mogło, 4. Nowa warstwa z Gaussian Blur, Normal, krycie 30% - żeby lekko ściąć szum, 5. Nowa warstwa z Local Contrast Enhancement z Astronomy Tools, Normal, krycie 30%, 6. Zdecydowany resample w dół. 7. Delikatna polerka TopazDenoise, bez wyostrzania i z maskami, 8. Korekta barw za pomocą Hue/Saturation, 9. Gwiazdki RGB (po traumatycznych przejściach, bo z powodu problemów technicznych większe były trójkątne i ucierpiały podczas konwersji z trójkątów w okręgi – nie przyglądajcie się za bardzo ;-) O obiekcie Nawiązując do tytułu wątku, zapewne nie jest to mgławica planetarna, mimo obecności w katalogu PK.- przynamniej nie tylko mgławica planetarna. Jest to obiekt o złożonej genezie i skomplikowanej strukturze, będącej efektem interakcji bardzo szybko poruszającej się gwiazdy GD561, otaczającej ją, choć bardzo zniekształconej sfery tlenu (jej mgławicy planetarnej właśnie) oraz międzygwiezdnego obszaru H. GD561 jest prawdopodobnie gwiazdą podwójną. Jest to biały karzeł o masie ok. 0.3 Słońca i temperaturze powierzchni 65 000 K. GD561 znajduje się tutaj i porusza się mniej-więcej jak zaznaczyłem poniżej. Przemieszcza się ze znaczną prędkością i zostawia swoją byłą mgławicę planetarną za sobą. GD561, gdy stał się białym karłem, odrzucił zewnętrzne warstwy tworząc sferyczną mgławicę planetarną, która poruszała się z dużą prędkością, wraz z gwiazdą. Wpadła jednak w obszar wodoru międzygwiazdowego i opór tego ośrodka ją zniekształcił- spłaszczył, oraz spowolnił. Obecnie mgławica OIII wydaje się przebijać przez chmurę wodoru i wydostawać z niej, ale ma już kształt spłaszczonej sfery. Widać także skompresowaną strukturę bow-shock w OIII. Wiatr gwiazdowy GD561 zjonizował obszar wodoru a kolizja z mgławicą planetarną zaburzyła jego strukturę i wytworzyła intrygujące obszary turbulentnego przepływu gazu, które są jedną z głównych atrakcji zdjęcia, w mojej opinii. Dość dobrze widoczne są bardzo dynamiczne strumienie H i O, zjonizowane i zapewne przyspieszane przez wiatr gwiazdowy GD561. Są one mniej-więcej zgodne z kierunkiem ruchu GD561. Wodorowa część Sh2-174 nie jest więc elementem mgławicy planetarnej. Jest raczej sferą Strömgrena, czyli międzygwiazdowym H, który został zjonizowany, rozgrzany oraz ukształtowany do postaci sfery z mniejszą gęstością wewnątrz przez gwiazdę. W tym wypadku przez GD561, która wraz ze swoją mgławicą planetarną przebijała się przez chmurę wodoru. Najbardziej znanym przykładem sfery Strömgrena jest NGC 2237 – Mgławica Rozeta, która łączy, jak w tym wypadku, mgławicę emisyjną oraz obszar H II. Podsumowując, powyższe wyjaśnia wygląd tego obiektu. Sfera tlenu z centralną gwiazdą wbiła się w chmurę wodoru. GD561 przebiła chmurę wodoru i swoją mgławicę planetarną jak kula z karabinu i podąża dalej. Była mgławica planetarna również przedziera się przez wodór. Dlatego ten obiekt wygląda trochę jak to: Dodatkowa lektura nieobowiązkowa: https://articles.adsabs.harvard.edu/pdf/1994AJ....108..978T https://en.wikipedia.org/wiki/Strömgren_sphere https://arxiv.org/pdf/1102.1309.pdf https://arxiv.org/pdf/2212.13349.pdf Wszelkie uwagi, jak zawsze, mile widziane- zwłaszcza te krytyczne. Miałem tym razem problemy z PS, gdzie w przeglądarce z wymuszonym sRGB wyświetlały się inne kolory niż w PS w sRGB- bardzo przesycone. Nie do końca jestem więc pewien co wy zobaczycie u siebie... Całość materiału- mastery, półprodukty z obróbki i finalne zdjęcie dostępne przez PW.
  3. Zmagania między moją cierpliwością a pogodą wygrała pogoda, więc jestem zmuszony zaprezentować tą niepowtarzalną mgławicę w formie niedokończonej, której brakuje co najmniej kilkunastu godzin ekspozycji (a jest już 65 g). Wybaczcie więc ułomności zdjęcia wynikające z niedostatecznej ilości fotonów, ale tego stwora można fotografować wyłącznie podczas bezksiężycowych nocy pozbawionych choćby śladów cirrusów. Zdecydowałem pokazać więcej struktury kosztem estetyki zdjęcia, ponieważ jest to bardzo nietypowy obiekt. Nie liczcie na subtelne przejścia tonalne, bo dane są bardzo płytkie. Focia Ha OIII Lokalizacja obiektu Okolice Duszy i Serca. RA 03 03 49,9 DEC +64 54 46 Czas i miejsce: Świętokrzyska wieś, Bortle 4, materiał zbierany od sierpnia do końca grudnia 2022. Ekspozycja: 1. Ha- 525 x 300s = 43,75 g 2. OIII- 251 x 300s = 21 g 65 godzin i ciągle mało ¯\_(ツ)_/¯ 3. RGB – po 15x120s na kanał. Sprzęt: Teleskop: SkyWatcher Maksutov-Newtonian MN190, 190/1000 mm Kamera: ASI1600MMP, Filtry: Baader Ha 7nm (kilkadziesiąt klatek) Antlia Ha 3nm (reszta), Antlia OIII 3nm, Montaż: SkyWatcher EQ6PRO Guider: SvBony 240mm, ASI120MM mini, Akcesoria: ZWO EFW, ZWO EAF, ASIAir V1 Kilka słów o obróbce Przede wszystkim chciałem pokazać strukturę fali uderzeniowej oraz wypełnioną turbulentnymi przepływami nieciągłość między nią a wewnętrzną częścią mgławicy. Pod tym względem nie wyszło rewelacyjnie. Sygnał jest bardzo płytki. Zbieranie światła i wydobywanie danych z szumu przypominało wydobywanie skamieniałości pędzelkiem i igłą. Obiekt jest niezwykle ciemny, zwłaszcza Ha są ilości śladowe. OIII jest jaśniejsze (czy raczej mniej ciemne). Mam wrażenie, że odbijałem się od wielu granic - światłosiły teleskopu, jakości nieba, 12 bitów kamery i jej QE oraz oczywiście umiejętności obróbki. Obiekt nietypowy również dlatego, że nie ma żadnych drobnych detali. To dobrze, ponieważ sygnał był niewiele wyższy od poziomu szumów i można było go wydobywać nie przejmując się zatarciem ostrych szczegółów. Ciekawym wyzwaniem było więc stopniowe okrajanie szumu za pomocą NX, Topaza, PS. Stretching również nie był łatwy. Rzutem na taśmę udało mi się zrobić na koniec roku gwiazdy RGB… przez cirrusy i podczas wiatru. Dobra okazja do opanowania korekty gwiazd w BlurXterminatorze, choć kalibracja kolorów nie wyszła do końca i było wiele artefaktów do ręcznej korekty. Odniesienie- zdjęcie HFG1 wykonane przez 4-metrowy teleskop Mayall w obserwatorium Kitt Peak. Workflow: A. Pixinsight: Mgławica: 1. DynamicCrop, 2. DynamicBackgroundExtraction, 3. NoiseXterminator, 4. StarXterminator, 6. GeneralizedHyperbolicStretch i NoiseXterminator. Gwiazdy: 1. DBE, 2. DynamicCrop, 3. BlurXterminator- korekta kształtu, wielkości, halo- gdyby nie to narzędzie to urobek by wylądował w koszu! 4. LRGBCombo 5. SPCC 6. GHS i dodatkowe wyciąganie małych gwiazd z maską za pomocą HistogramTransformation, 7. StarXterminator – obraz samych gwiazd. B. Photoshop: 1. Gradient Map – czerwona na Ha, niebieska na OIII. 2. Praca nad kolorami, korekta artefaktów, Levels, CameraRAW, etc. 3. Gwiazdy RGB dodane przez Screen po uprzedniej ręcznej korekcie problemów. 4. Resize, png. -------------------------------------------------------------------------------------------------------------------------------------------------------------- Opis obiektu (zróbcie kawę / otwórzcie piwko- jest o czym pisać) // Podziękowania dla @Astrotuvoc @diver @ZByT (Astropolis) i za cenne uwagi i niezbędne poprawki do poniższego tekstu // Kres życia, jak w tytule, ale jednocześnie najlepszy tysiąc lat na zrobienie tego zdjęcia. Mgławice planetarne istnieją krótko - średnio 10 000 lat. Ta jest już stara i będzie tylko gasnąć. Lecz teraz ma najciekawszą strukturę. Jest to unikatowy obiekt. Nie zaobserwowano do tej pory żadnej mgławicy planetarnej o takiej strukturze, choć może kiedyś Mira A się taką stanie. Poniżej zdjęcie Mira A i jej warkocza w UV. Podobieństwa są oczywiste. HFG1 jest bardzo ciemny więc został odkryty relatywnie niedawno, w 1982, przez Panów Heckathorna, Fessena i Gulla. Jego sąsiadem jest inna planetarka - Abell 6. HFG1 należy do mgławic planetarnych typu F, czyli jest bąblem, ale równo wypełnionym gazem, stąd „puszysty” wygląd centrum. Znajduje się zapewne ~490 parseków (1597 lat świetlnych) od naszej gwiazdy. Jej źródłem jest interesujący układ podwójny – V664Cas. Jedna z gwiazd to podkarzeł typu O (sdO). Jest to bardzo mała gwiazda, ok 0,5 masy Słońca, składająca się głównie z Helu. Jest jednakże bardzo gorąca - ~83 000K. Obecnie czerpie swoją energię z syntezy helowej. Tego rodzaju karły różnią się znacząco od bardziej powszechnych, chłodniejszych białych karłów a ich pochodzenie nie jest do końca wyjaśnione. Poniżej schemat z Wikipedii. Druga gwiazda jest większa, znajduje się w ciągu głównym - ma masę ~1.1 masy Słońca, promień ~1.3 Słońca i temperaturę ~5 500K, typ widmowy F5-K0 V i znajduje się nadal w ciągu głównym. Gwiazdy znajdują się blisko siebie - orbita trwa ok. 14 godzin i dzieli je zapewne kilka milionów kilometrów. Są zatem naprawdę bardzo blisko siebie. Prawdopodobnie, gdy pierwsza gwiazda, obecnie sdO, była czerwonym olbrzymem, otoczyła drugą gwiazdę swoją atmosferą, spowalniając ją i skracając jej orbitę. Tabela z podstawowymi właściwościami układu: HFG1 jest interesującym obiektem dla naukowców badających ewolucję gwiazd, ponieważ pozwala lepiej poznać właściwości i historię podkarłów typu O, o których wiemy jeszcze niewiele. W tym wypadku jest to możliwe głównie dlatego, że HFG1 nie stoi w miejscu względem materii międzygwiezdnej, ale się porusza bardzo szybko - od 29 do 59 km/s. Rozgrzewka zakończona, gratuluję dotarcia do tego punktu :-) Czas na twardsze dane niż Wikipedia. Moim głównym źródłem było to opracowanie: Modelling the cometary structure of the planetary nebula HFG1 based on the evolution of its binary central star V664 Cas. A. Chiotellis, P. Boumis, N. Nanouris, J. Meaburn, G. Dimitriadis; Monthly Notices of the Royal Astronomical Society, Volume 457, Issue 1, 21 March 2016. Praca ta miała na celu wykonanie symulacji hydrodynamicznych, które mogłyby wyjaśnić osobliwą strukturę tego obiektu. Jest ona dziwna dlatego, że mgławica ma mocno skompresowaną „głowę”, otoczoną oddzieloną od centralnej masy strukturą fali uderzeniowej, która okala prawie całe centrum oraz długi, również skompresowany ogon. Skracając nieco wywód, jedyny działający model musiał przyjąć następujące, podstawowe założenia: 1. Stała gęstość (i ciśnienie) ośrodka międzygwiazdowego. 2. Wiatr gwiazdowy V664 Cas był zmienny w czasie – założenie kluczowe. Efekty symulacji przypominają rzeczywistość (D to zakładana odległość HFG1 od Słońca): Opisania wymaga struktura fali uderzeniowej, która jest bardzo dobrze widoczna, zwłaszcza w kierunku, w którym mgławica i V664 Cas się poruszają. Jej genezą jest prędkość obiektu - porusza się z prędkością przekraczającą prędkość dźwięku w otaczającym medium. W początkowym etapie emisji materiału, z którego utworzyła się „głowa”, masa wiatru jest o wiele większa od odpychanego przez nie gazu międzygwiazdowego, więc materiał wyrzucany przez gwiazdę rozprasza się swobodnie. Jednak prędkość wiatru jest większa niż prędkość dźwięku w otaczającym medium. Z czasem tworzy się więc fala uderzeniowa, która rozgrzewa i zagęszcza otaczający gaz międzygwiazdowy. Opór prowadzi to do spowolnienia bąbla gazu emitowanego przez gwiazdę i tworzenia się drugiej fali - szoku końcowego (termination shock), której prędkość jest mniejsza od prędkości dźwięku w medium i która porusza się do wewnątrz, kompresując wiatr gwiazdowy oraz tworząc drugą, wewnętrzną powłokę. Między tymi dwoma strukturami tworzy się widoczny na zdjęciu i symulacji dystans wypełniony turbulentnym gazem. Podobne zjawiska mają miejsce w naszej okolicy (grafika z Wikipedii): Wracając do dwóch podstawowych założeń symulacji, drugie ma daleko idące konsekwencje. Ponieważ mgławica się porusza, to oś jej ruchu jest jednocześnie osią czasu jej ewolucji. Symulacja musiała przyjąć konkretne wartości dotyczące gęstości, masy, prędkości i okresów emisji wiatru gwiazdowego przez V664 Cas aby uzyskać wynik zgodny z rzeczywistością. Tym samym naukowcy mogli odczytać z symulacji historię ewolucji gwiazdy. Obecna gwiazda sdO była kiedyś gwiazdą znajdującą się w gałęzi asymptotycznej olbrzymów (AGB – Asymptotic Giant Branch) wykresu Hertzsprunga-Russella i miała masę ~3 Słońc. Podczas ewolucji, we wczesnej fazie AGB utworzył się ogon, widoczny głównie w paśmie Ha, gdy wiatr gwiazdowy miał niewielką masę i prędkość. Następnie gwiazda weszła w fazę emisji superwiatru- jego gęstość oraz prędkość bardzo wzrosły, co jest źródłem „głowy”. Tutaj nastąpił kres jej życia jako gwiazdy AGB. Nie mam danych o składzie „ogona” w momencie jego emisji i nie chcę wyciągać wniosków z tego, że ogon składa się głównie z Ha i OIII tam obecnie prawie nie ma, ponieważ OIII bez aktywnego źródła jonizacji nie przetrwa za długo w tej formie. Końcowa faza emisji superwiatru była krótka i gwałtowna, więc nie zaburzył on jeszcze struktury ogona. Patrzymy na tą mgławicę w wyjątkowym momencie w czasie! Reasumując wnioski dotyczące jasnych gwiazd sdO- ta mgławica (i symulacja) łączą je z danym typem gwiazd AGB i umożliwiają prześledzenie ich ewolucji w czasie. HFG1 jest, w tym sensie, obiektem unikatowym, bo udowadnia pochodzenie tego konkretnego typu podkarłów. EOT 😊 Materiały źródłowe dostępne przez PW, jak zwykle. Z góry dziękuję za wszelkie uwagi i komentarze. PS – wciąż mam nadzieję na dalszy ciąg z 2x większą ilością OIII… zobaczymy.
  4. Mgławica Półksiężyc jest dzieckiem dwóch odrębnych cykli życia gwiazdy WR136 - gwiazdy Wolfa-Rayeta. Jest to jeden z najbardziej ekstremalnych rodzajów gwiazd. WR136 jest niezwykle młoda- powstała 4.5 miliona lat temu. Nasze Słońce jest 1000 razy starsze. WR136 nie pożyje jednak długo. Za około milion lat prawdopodobnie wybuchnie jako ogromna supernowa. Obecnie świeci tak jasno jak 600 tysięcy słońc a jej masa przekracza dwudziestokrotność masy naszej gwiazdy. Jej powierzchnia ma temperaturę około 70 000 stopni Celsjusza, podczas gdy powierzchnia naszego Słońca zaledwie 5500. Mgławica powstała, gdy WR136 zmieniła się z czerwonego nadolbrzyma, odrzucając powłokę gazu o masie około 5 naszych słońc i stała się gwiazdą Wolfa-Rayeta, która charakteryzuje się bardzo silnym wiatrem słonecznym oraz emituje ogromne ilości promieniowania UV. Wiatr gwiazdy WR136 zderza się teraz z jej poprzednią powłoką, mieszając się z nią i wraz z promieniowaniem UV, jonizuje i ogrzewa ją. Stąd też niezwykle turbulentny wygląd. Jest to bańka rozdmuchiwana od wewnątrz. NGC6888 to bardzo młoda mgławica- ma mniej niż 200 000 lat i znajduje się około 5000 lat świetlnych od Ziemi. Nie wiem, dlaczego została nazwana Mgławicą Półksiężyc- wygląda jak zagubiony mózg Pana Spocka (wtajemniczeni zrozumieją ;-). [Podmiana głównego zdjęcia - poprawione jasne części mgławicy w Ha dodatkowym HDR] Ha: OIII: Akwizycja: Świętokrzyska wieś, Bortle 4, kilka ciepłych, czerwcowych nocy. Czasy: 1. Ha- 33 x 300s (miałem 107, większość poszła do kosza z powodu okropnego seeingu; lepszy stack wyszedł z małej ilości najlepszych subów). 2. OIII- 74 x 300s (część przy bardzo kiepskim seeingu, więc potencjał tej ogniskowej do uzyskania detalu w paśmie OIII nie jest zrealizowany). Graty: Teleskop: SkyWatcher Maksutov-Newtonian MN190, 190/1000 mm Kamera: ASI1600MMP, Filtry: Baader Ha 7nm, Antlia OIII 3nm, Montaż: SkyWatcher EQ6PRO Guider: SvBony 240mm, ASI120MM mini, Akcesoria: ZWO EFW, ZWO EAF, ASIAir V1 Kilka słów o obróbce: Moje pierwsze HOO. Ta mgławica sprawiła mi mnóstwo problemów. Borykałem się od kilku dni z próbą sensownego kolorystycznie złożenia kanałów w PIX ale rezultaty estetycznie i technicznie były złe. Ogromne problemy sprawiało mi sporządzenie rozsądnej warstwy luminancji, która pozwoliłaby wyeksponować obydwa pasma emisji. Postanowiłem więc podejść zupełnie inaczej, rezygnując z luminancji na rzecz dopracowania detali w kanałach Ha oraz OIII i mieszając je w PS. Obróbka Ha i OIII w PIX jak poniżej: 1. DynamicCrop 2. DBE 3. NoiseXterminator 4. Wygenerowanie PSF dla Ha i OIII, 5. StarXterminator, 6. Dekonwolucja z RangeMask, 7. MMT na Ha z RangeMask, 8. GeneralizedHyperbolicStretch, 9. HDRMultiscaleTransform. Dalsza część w PS: 1. Wrzuciłem do PS i pokoloryzowałem Ha i OIII narzędziem Gradient Map z opcją Multiply na około 90%. Gradienty proste- od czarnego do czerwonego i niebieskiego. Tak to wyglądało: 2. Nałożyłem warstwę OIII na Ha poprzez "Difference" na 75%. 3. Levels aby nieco bardziej rozciągnąć. 4. Selective color bez maski, aby nieco zmodyfikować niebieski. 5. Selective color z maską na samej mgławicy, aby zmodyfikować Ha wewnątrz. Po zmieszaniu kanałów Ha miał intensywnie różowo-magentową barwę, która kompletnie mi nie odpowiadała. Zdecydowałem więc zmienić kolor na bardziej syntetyczny, ale lepiej komponujący się z niebieskim tlenem. Ogólne uwagi z obróbki: Najjaśniejsze krańce mgławicy są bardzo trudne w obróbce, nawet po rozsądnym użyciu HDRMultiscaleTransform. Na prawym skraju mgławicy niestety zgubiłem nieco subtelności i nie do końca wiem, jak temu zapobiec. Gwiazdy z Ha dodane w PS. Ucierpiały z powodu tubusu nienadążającego stygnąć podczas ciepłych nocy, kiepskiego seeingu oraz pyłu w atmosferze. Mimo wąskiego filtra OIII gwiazdy były bardzo spuchnięte i zostawiły po ich usunięciu ślady. Nie potrafię jeszcze retuszować ręcznie w PS, więc trochę to kłuje w oczy. Ogólnie, zdjęcie jest gorsze niż potencjalnie by mogło być z powodu przeciętnej jakości materiałów oraz oczywiście mojej doświadczalnej obróbki. Kompletny projekt do pobrania tutaj (link aktywny do końca wakacji): KLIK!
×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Umieściliśmy na Twoim urządzeniu pliki cookie, aby pomóc Ci usprawnić przeglądanie strony. Możesz dostosować ustawienia plików cookie, w przeciwnym wypadku zakładamy, że wyrażasz na to zgodę.

© Robert Twarogal * forumastronomiczne.pl * (2010-2023)